cover image: Atomic Force Microscopy Stiffness Mapping in Human Aortic Smooth Muscle Cells

Atomic Force Microscopy Stiffness Mapping in Human Aortic Smooth Muscle Cells

1 Aug 2023

Aortic smooth muscle cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In this study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use atomic force microscopy (AFM) nano-indentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12 kPa and 25 kPa. Results show that all SMCs exhibit globally a lognormal stiffness distribution, with medians in the range 10–30 kPa. The mean of stiffness distributions is 16 kPa in aneurysmal SMCs and 12 kPa in healthy cells, but the differences are not statistically significant due to the large dispersion of AFM nano-indentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nano-indentation stiffness of their cytoskeleton.

Authors

Claudie Petit, Ali-Akbar Karkhaneh Yousefi, Marine Guilbot, Vincent Barnier, Stéphane Avril, Nathalie Douard

Bibliographic Reference
Claudie Petit, Ali-Akbar Karkhaneh Yousefi, Marine Guilbot, Vincent Barnier, Stéphane Avril, et al.. Atomic Force Microscopy Stiffness Mapping in Human Aortic Smooth Muscle Cells. Journal of Biomechanical Engineering, 2023, 144 (8), pp.081001. ⟨10.1115/1.4053657⟩. ⟨emse-04106617⟩
DOI
https://doi.org/10.1115/1.4053657
Department
Santé Ingénierie Biologie Saint-Etienne
HAL Collection
['INSERM - Institut national de la santé et de la recherche médicale', 'Université Jean Monnet - Saint-Etienne', 'Ecole Nationale Supérieure des Mines de Saint-Etienne', 'Institut Mines Télécom', 'CNRS - Centre national de la recherche scientifique', 'UDL', 'composantes instituts telecom']
HAL Identifier
4106655
Institution
['Université Jean Monnet - Saint-Étienne', 'Institut National de la Santé et de la Recherche Médicale']
Laboratory
['Centre Ingénierie et Santé', 'Laboratoire Georges Friedel', 'Centre Science des Matériaux et des Structures']
Published in
France

Table of Contents