cover image: Dual-sPLS : a Family of Dual Sparse Partial Least Squares Regressions for Feature Selection and Prediction with Tunable Sparsity; Evaluation on Simulated and Near-Infrared (NIR) Data

Dual-sPLS : a Family of Dual Sparse Partial Least Squares Regressions for Feature Selection and Prediction with Tunable Sparsity; Evaluation on Simulated and Near-Infrared (NIR) Data

15 Jun 2023

Relating a set of variables X to a response y is crucial in chemometrics. A quantitative prediction objective can be enriched by qualitative data interpretation, for instance by locating the most influential features. When high-dimensional problems arise, dimension reduction techniques can be used. Most notable are projections (e.g. Partial Least Squares or PLS ) or variable selections (e.g. lasso). Sparse partial least squares combine both strategies, by blending variable selection into PLS. The variant presented in this paper, Dual-sPLS, generalizes the classical PLS1 algorithm. It provides balance between accurate prediction and efficient interpretation. It is based on penalizations inspired by classical regression methods (lasso, group lasso, least squares, ridge) and uses the dual norm notion. The resulting sparsity is enforced by an intuitive shrinking ratio parameter. Dual-sPLS favorably compares to similar regression methods, on simulated and real chemical data.

Authors

Louna Alsouki, Laurent Duval, Clément Marteau, Rami El Haddad, François Wahl

Related Organizations

Bibliographic Reference
Louna Alsouki, Laurent Duval, Clément Marteau, Rami El Haddad, François Wahl. Dual-sPLS : a Family of Dual Sparse Partial Least Squares Regressions for Feature Selection and Prediction with Tunable Sparsity; Evaluation on Simulated and Near-Infrared (NIR) Data. Chemometrics and Intelligent Laboratory Systems, 2023, 237, pp.104813. ⟨10.1016/j.chemolab.2023.104813⟩. ⟨hal-04127738⟩
DOI
https://doi.org/10.1016/j.chemolab.2023.104813
HAL Collection
['Université Jean Monnet - Saint-Etienne', "Sciences De l'Environnement", 'IFP Energies Nouvelles', 'CNRS - Centre national de la recherche scientifique', 'Institut Camille Jordan', 'Université Claude Bernard - Lyon I', 'Institut National des Sciences Appliquées de Lyon', 'Ecole Centrale de Lyon', 'CNRS-INSMI - INstitut des Sciences Mathématiques et de leurs Interactions', 'GIP Bretagne Environnement', "Laboratoire d'excellence en Mathématiques et informatique fondamentale de Lyon", 'Groupe INSA', 'UDL', 'Université de Lyon', 'Université Saint Joseph de Beyrouth', 'ANR']
HAL Identifier
4127738
Institution
['École Centrale de Lyon', 'Université Claude Bernard Lyon 1', 'Institut National des Sciences Appliquées de Lyon', 'Université Jean Monnet - Saint-Étienne', 'Université Saint-Joseph de Beyrouth', 'IFP Energies nouvelles']
Laboratory
Institut Camille Jordan
Published in
France

Table of Contents