cover image: Localization in Open Quantum Systems

Localization in Open Quantum Systems

16 Nov 2023

We investigate the zero-temperature phase diagram of a one-dimensional XXZ spin chain coupled with local dissipative baths composed of simple harmonic oscillators. In a finite magnetization sector, we map this system onto a two-dimensional classical action using bosonization. From this classical field theory, we find the existence of a BKT phase transition between the pre-existing Luttinger liquid phase and a new dissipative phase at zero temperature. This new phase is a gapless spin density wave with unaltered susceptibility and vanishing spin stiffness. These analytical predictions are verified against numerical Langevin dynamics simulations of the action. The local baths in the spin chain can also be interpreted as annealed disorder and they affect the transport properties. Particularly for subohmic baths, the static conductivity vanishes, which can be interpreted as a localization effect induced by the presence of dynamical disorder. Moreover, we analyze the model at zero magnetization and argue that in that case, the gapless spin density wave is replaced by a gapped antiferromagnetic phase.

Authors

Saptarshi Majumdar

Related Organizations

Bibliographic Reference
Saptarshi Majumdar. Localization in Open Quantum Systems. Disordered Systems and Neural Networks [cond-mat.dis-nn]. Université Paris-Saclay, 2023. English. ⟨NNT : 2023UPASP157⟩. ⟨tel-04326573⟩
HAL Collection
["CEA - Commissariat à l'énergie atomique", 'CNRS - Centre national de la recherche scientifique', 'STAR - Dépôt national des thèses électroniques', 'IPHT', 'CEA - Université Paris-Saclay', 'Université Paris-Saclay', 'Direction de Recherche Fondamentale', 'Graduate School Mathématiques', 'Graduate School Physique', 'Laboratoire de Physique Théorique et Modèles Statistiques']
HAL Identifier
4326573
Institution
['Université Paris-Saclay', "Commissariat à l'énergie atomique et aux énergies alternatives"]
Laboratory
['Laboratoire de Physique Théorique et Modèles Statistiques', 'Institut de Physique Théorique - UMR CNRS 3681']
Published in
France

Table of Contents