In this paper, we deal with a Markov chain on a measurable state space $(\mathbb{X},\mathcal{X})$ which has a transition kernel $P$ admitting an aperiodic small-set $S$ and satisfying the standard geometric-drift condition. Under these assumptions, there exists $\alpha_0 \in(0,1]$ such that $PV^{\alpha_0} \leq \delta^{\alpha_0}\, V^{\alpha_0} + \nu(V^{\alpha_0})1_S$. Hence $P$ is $V^{\alpha_0}-$geometrically ergodic and its ``second eigenvalue'' $\varrho_{\alpha_0}$ provides the best rate of convergence. Setting $R:=P - \nu(\cdot)1_S$ and $\Gamma:=\{\lambda\in\mathbb{C},\ \delta^{\alpha_0} < |\lambda| < 1\}$, $\varrho_{\alpha_0}$ is shown to satisfy, either $\varrho_{\alpha_0} = \max\big\{|\lambda| \, : \, \lambda\in\Gamma,\ \sum_{k=1}^{+\infty} \lambda^{-k} \, \nu(R^{k-1}1_S) = 1\big\}$ if this set is not empty, or $\varrho_{\alpha_0} \leq \delta^{\alpha_0}$. Actually the set is finite in the first case and is composed by the spectral values of $P$ in $\Gamma$. The second case occurs when $P$ has no spectral value in $\Gamma$. Moreover, a bound of the operator-norm of $(zI-P)^{-1}$ allows us to derive an explicit formula for the multiplicative constant in the rate of convergence, which can be evaluated provided that any information of the ``second eigenvalue'' is available. Such numerical computation is carried out for a classical family of reflected random walks. Moreover we obtain a simple and explicit bound of the operator-norm of $(I-P+\pi(\cdot)1_{\mathbb{X}})^{-1}$ involved in the definition of the so-called fundamental solution to Poisson's equation. This allows us to specify the location of the eigenvalues of $P$ and, then, to obtain a general bound on $\varrho_{\alpha_0}$. The reversible case is also discussed. In particular, the bound of $\varrho_{\alpha_0}$ obtained for positive reversible Markov kernels is the expected one, and numerical illustrations are proposed for the Metropolis-Hastings algorithm and for the Gaussian autoregressive Markov chain. The bound for the operator-norm of $(I-P+\pi(\cdot)1_{\mathbb{X}})^{-1}$ is derived from an estimate, only depending on $\delta^{\alpha_0}$, of the operator-norm of $(I-R)^{-1}$ which provides another way to get a solution to Poisson's equation. This estimate is also shown to be of greatest interest to generalize the error bounds obtained for perturbed discrete and atomic Markov chains in [LiuLi18] to the case of general geometrically ergodic Markov chains. These error estimates are the simplest that can be expected in this context. All the estimates in this work are expressed in the standard $V^{\alpha_0}-$weighted operator norm.
Authors
- Bibliographic Reference
- Loïc Hervé, James Ledoux. Explicit bounds for spectral theory of geometrically ergodic Markov kernels and applications. Bernoulli, In press, 30 (1), pp.581-609. ⟨hal-03819315v2⟩
- HAL Collection
- ['Université de Rennes 1', 'Institut de Recherche Mathématique de Rennes', 'Université Rennes 2 - Haute Bretagne', 'CNRS - Centre national de la recherche scientifique', 'Institut National des Sciences Appliquées de Rennes', 'CNRS-INSMI - INstitut des Sciences Mathématiques et de leurs Interactions', 'Institut de Recherche Mathématiques de Rennes', 'Statistique', 'Théorie ergodique', 'Centre Henri Lebesgue', 'Publications labos UR1 dans HAL-Rennes 1', 'UR1 - publications Maths-STIC', 'Université Rennes 2', 'TEST Université de Rennes CSS', 'Université de Rennes', 'Groupe INSA', 'ANR', 'Pôle Rennes 1 - Mathématiques - Numérique', 'Institut Agro']
- HAL Identifier
- 3961195
- Institution
- ['Université de Rennes', 'Institut National des Sciences Appliquées - Rennes', 'École normale supérieure - Rennes', 'Université de Rennes 2', 'Institut Agro Rennes Angers']
- Laboratory
- Institut de Recherche Mathématique de Rennes
- Published in
- France
Table of Contents
- Introduction 3
- Quasi-compactness of P 7
- A bound for the constant C in (2) 11
- A bound for the norm of solutions to Poisson's equation 14
- Bounds for the second eigenvalue of P 16
- Application to perturbed Markov kernels 24
- Complement on the real number 0 28
- Order of the eigenvalues of P 29
- Proof of (65) when is locally compact 31