cover image: Land-neutral negative emissions through biochar-based fertilization—assessing global potentials under varied management and pyrolysis conditions

20.500.12592/kwh762m

Land-neutral negative emissions through biochar-based fertilization—assessing global potentials under varied management and pyrolysis conditions

11 Apr 2024

Climate stabilization is crucial for restabilizing the Earth system but should not undermine biosphere integrity, a second pillar of Earth system functioning. This is of particular con- cern if it is to be achieved through biomass-based negative emission (NE) technologies that compete for land with food production and ecosystem protection. We assess the NE con- tribution of land- and calorie-neutral pyrogenic carbon capture and storage (LCN-PyCCS) facilitated by biochar-based fertilization, which sequesters carbon and reduces land demand by increasing crop yields. Applying the global biosphere model LPJmL with an enhanced representation of fast-growing species for PyCCS feedstock production, we calculated a land-neutral global NE potential of 0.20–1.10 GtCO2 year−1 assuming 74% of the biochar carbon remaining in the soil after 100 years (for + 10% yield increase; no potential for + 5%; 0.61–1.88 GtCO 2 year−1 for + 15%). The potential is primarily driven by the achiev- able yield increase and the management intensity of the biomass producing systems. NE production is estimated to be enhanced by + 200–270% if management intensity increases from a marginal to a moderate level. Furthermore, our results show sensitivity to process- specific biochar yields and carbon contents, producing a difference of + 40–75% between conservative assumptions and an optimized setting. Despite these challenges for making world-wide assumptions on LCN-PyCCS systems in modeling, our findings point to dis- crepancies between the large NE volumes calculated in demand-driven and economically optimized mitigation scenarios and the potentials from analyses focusing on supply-driven approaches that meet environmental and socioeconomic preconditions as delivered by LCN-PyCCS.
land use rd1 - earth system analysis co2 removal

Authors

Werner, Constanze, Lucht, Wolfgang, Kammann, Claudia, Braun, Johanna

Citation
Werner, C., Lucht, W., Kammann, C., Braun, J. (2024): Land-neutral negative emissions through biochar-based fertilization—assessing global potentials under varied management and pyrolysis conditions. - Mitigation and Adaptation Strategies for Global Change, 29, 34.
DOI
https://doi.org/10.1007/s11027-024-10130-8
Published in
Germany
Rights Holder
http://creativecommons.org/licenses/by/4.0/

Related Topics

All